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Transfer processes in a cryogenic coaxial electric cable with a porous inner tube 
are analyzed; the analysis reveals ways of intensifying the outflow of the heat 
generated when electric power is transmitted along the cable. 

The creation of electric transmission lines cooled to a very low temperature (cryogenic 
lines) raises the problem of removing the heat generated in the cable in an efficient manner. 
Cryogenic lines are subdivided into the hyperconducting type, which make use of the sharp 
drop in the resistance of pure conductors with falling temperature, and the superconducting 
type, in which the phenomenon of superconductivity is exploited. In transmitting electrical 
power along lines of these or any other types heat evolution may occur. This is associated 
firstly with theordinary Joule losses and secondly with hysteresis losses under ac condi- 
tions ~i]. 

In order to ensure a rapid outflow of the heat generated in the cable for a small tem- 
perature drop, it is desirable to increase the area of the surface flushed by the coolant. 
This is achieved by the construction illustrated in Fig. i, as described in [2]. Conductors 
in the form of wire braids are placed on both sides of a tube made from porous electrically 
insulating material II. The coolant is pumped along the inside of the porous tube and in the 
gap between the tube and the outer screen. Filtering through the porous tube in its travel 
through the system, the coolant eliminates the heat generated in the latter. 

In this paper we shall present a theoretical analysis of the hydrodynamic and heat- 
transfer characteristics of this type of system for the case of a homogeneous coolant (with- 
out any phase transformations) flowing along it, gaseous helium in particular. 

Heat flows into the system through the surface r = R3 owing to the imperfection of the 
outer thermal insulation. We call the thermal flux density through this surface q3. The 
wire braids on the two surfaces of the porous tube are fairly thin compared with the tube 
thickness. Hence the heat evolution which occurs in the wires when an electric current is 
passed through them may be expressed in the form of two surface heat sources concentrated on 
the surfaces r = RI and r = R2. We denote the intensities of these sources by ql and q2. We 
neglect the heat evolution associated with the dielectric losses in the material of the 
porous tube by comparison with that in the conductors. If necessary this neglected term may 
easily be incorporated in the problem about to be formulated. 

As estimation of the Reynolds (Re) number for the flow of gaseous helium shows that, 
even for a comparatively low coolant velocity at the entrance into the cable (~0.4 m/sec), 
the Re number is more than an order of magnitude greater than the critical number Recr for 
flows along infinitely long, impermeable tubes. This shows that the helium flow in the ini- 
tial section of the inner tube is, as a rule, turbulent. As the coolant permeates into the 
coaxial gap, its velocity in the inner tube diminishes on passing down the flow together 
with the Re number, and the latter may fall below Recr. In this case the flow becomes 
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Fig. I. Coaxial cable (schematic): I) Inner region; II) porous 
electrically-insulating tube; tube; III) coaxial gap. 

laminar, and will subsequently remain so all along the tube. 

If the coaxial gap is closed at the initial point of the cable, the opposite will 
occur. In the initial section of the gap the helium velocity will be low and the flow lam- 
inar. As coolant penetrates into tNe gap the velocity of the gas will increase down the 
flow and the flow may become turbulent. 

i. Let us first present the case for a laminar flow of coolant. Since the length of 
the cable L is much greater than the transverse dimensions of the channel (RI or R3-R=), 
the flow of coolant in regions I and III may be described by boundary-layer equations. In 
a cylindrical coordinate system these have the form: 
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Before writing down the transfer equations in the porous wall of the tube (region II 
in Fig. i), we should make some comments regarding the character of the transfer processes 
taking place in this region. First of all, owing to the small thickness of the tube wall as 
compared with its length, we may neglect filtration and heat conduction in the longitudinal 
direction. Secondly, we shall assume local equality between the temperatures of the fil- 
tering gas and the porous matrix. Finally, we shall describe filtration on the basis of the 
Darcy law. On these assumptions the transfer processes in the tube walls will be described 
by the following system of equations: 

OrPVr --0; v~=O; 
Or 
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The transfer equations, written out separately for each of the regions in question, have to 
be supplemented by the equation of state 

P ---- P (p, TL (8)  
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For a pressure close to atmospheric, and over a temperature range of the order of a few 
degrees, the specific heat of gaseous helium varies very slowly. We may therefore put h = 
cpT. 

In formulating the boundary conditions and the conditions of conjugation for the fore- 
going equations, we shall distinguish the corresponding quantities in each of the regions by 
the indices I, 2, 3. Owing to the effects of adhesion, the v x velocity component should 
vanish at the tube walls: 

At the surface r = R, 
servation conditions: 

and 

% lr=~, = Vx, I:=~ = vx, I~=~, = o. (9 )  

r = R2 we must satisfy the mass-flow continuity and energy-con- 
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In addition to this, the surfaces r = R~ and r = R2 should be characterized by continuity 
of the helium temperature 

and pressure 

T1 It=a, ---- Tz I,'=R~; Ts f,'=a, = T~ tr=az (14) 

PI!,=R,-- P2Ir=R,; Palr=R 2 = P=Ir=a=. 

A flux q3 passes through the outer shell. Hence 

( 1 5 )  

_ _  ~, OT r = R ,  

Or = q~" (16) 

Supplementary conditions apply atthe entry into and exit from the cable. We shall discuss 
these in detail below. 

2. The turbulent flow of the coolant may also be described by the boundary-layer equa- 
tions, but it is very troublesome to calculate the flow on the basis of any semiempirical 
theory of the turbulent boundary layer. However, we may confine ourselves to a more approx- 
imate calculation, that of finding the flow characteristics averaged over the cross section 

of the channel. 

Owing to the intense agitation taking place, in the case of turbulent flow such quanti- 
ties as p and T should depend only slightly on the transverse coordinate r. Bearing this in 
mind, and averaging the equations of the turbulent boundary layer over the cross section of 
the inner tube, we arrive at the following system of equations: 

d - 2 (plvr~),=a___x_~ ; 
dx (PxVx,)---- R1 (17) 

d [p~ -2 2 T . .  
dx' +~P~Vxl]=--  R1 ' . (18)  
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where 

d (px~xhl) 2 2 qqlr=~,  
dx +--R-/f. (pvqhOt=,%= /71 (19) 
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Rl ~ xl. 

The s y s t e m  o f  e q u a t i o n s  ( 8 ) ,  ( 1 7 ) - ( 2 0 )  i s  n o t  c l o s e d .  In  o r d e r  to  s o l v e  t h i s  s y s t e m  we need  
information as to the momentum flow coefficient B and the frictional force per unit lateral 
surface area Tm; these must be obtained experimentally. 

An analogous averaging procedure leads to the following system of equations describing 
the turbulent flow of the gas in the coaxial gap: 
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Experimental data regarding the coefficients B and ~ = 8xm/pv~ for flows along tubes 
with injection and suction are presented in [3, 4]. These amount to the following: I) Start- 
ing at a certain distance from the entry into the permeable section (~ 8R), 8 ceases to de- 
pend on x; for the case of suction B is close to unity; 2) in the case of injection the co- 
efficient of friction ~ is very similar to the value which it assumes in an impermeable tube. 
In the case of suction the friction depends on the suction coefficient Kx = Vr[ r = Rz/~ 
and is given by the equation ~ = 17.5 Kz. x 

Integration of Eqs. (5)-(7), with due allowance for conditions (10)-(15), yields the 
following exvressions for the quantities on the right-hand sides of Eqs. (17)-(19) and (21)- 

(23) for (pxVrl) r = R~, (P3Vr3)r = R2, qr~Ir= RI' qr3 Ir = R2: 

(p~vq)~=R~ = clR1; (psv~.)t=~, = clR3; 
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3. Filtration through the porous barrier leads to a fall in the coolant velocity (on 
passing down the flow) in the region from which it is subject to suction; ultimately the 
flow becomes laminar (if it were initially turbulent). The transition from turbulent to 
laminar flow takes place over a finite region, and it is very difficult to calculate the 
flow over this. At the same time, in order to calculate the laminar flow following this 
region we have to know the velocity profile at its exit point. It should be added that Recr 
is also unknown for flows along tubes with injection and suction. For these reasons in the 
present investigation we decided to base our calculations of the flow Of coolant along the 
whole cable on Eqs. (17)-(19), (21)-(23), (8), (25)-(29). This simplification should not 
have any serious effect on the results of the calculations, since for sufficiently high 
velocities of the coolant the regions of laminar gas flow should make up only a very small 
part of the length of the whole section of cable. 

In order to solve the system of ordinary differential equations (17)-(19) and (21)-(23), 
we have to supply six boundary conditions. Some of these may be given at the entrance into 
the part under consideration and some at the outlet; where and what conditions should be 
specified depends on the particular physical situation. For the equations of energy (19) and 
(23), the temperature of the coolant injected into the inner tube and the annular gap should 
be given at the entrance into the cable. The conditions for the hydrodynamic equations de- 
pend on how the pumping of the coolant through the cable is organized. Specified pressures 
P1)x = 0, P31x = 0, P1]x = L, P31x = L, many be created at the entrance and outlet of the 
cable. The difference between these then determines the rate of flow of the coolant. In this 
case we shall have an end problem. Theremay also be other ways of expressing the boundary 
conditions. In particular, when all the conditions are specified at the entrance into the 
cable, we have an initial problem. Our present numerical calculations were carried out for 
this latter case. 

First of all, we studied the hydrodynamic flow pattern for the isothermal case without 
the energy equations. The coaxial gap was assumed to be covered at the entrance into the 
cable, i.e., vx31x = 0=0. In addition to this, the total flow of coolant (P1~Xl)x = 0 and 
its pressure PIIx = 0 were specified at the entrance into the porous tube. The fourth condi- 
tion (the pressure at the initial point of the coaxial gap) was varied. Depending on the 
value of this pressure, different flow patterns were obtained. The equation of state for 
helium was taken from [5]. 

It should be noted that, from the point of view of screening a superconductor against 
the thermal flux q3 arriving from outside, the most desirable mode of flow is that in which 
filtration of the gas from the inner tube into the coaxial gap through the porous wall takes 
place along the whole cable. The pressure distribution along the tube and the coaxial gap 
corresponding to this case is shown in Fig. 2a. For specified vx31x = 0 ' = 0, (p1~xl) x _ 0' 
P11x = 0 K and L, a flow of this kind is realised, not for all P3ix = 0, but only for-values 
lying in the range (P', P"). If P31x = 0,is made less than P'3, the flow pattern changes. As 
befSre, there will be suction of the fluid from the inner tube into the coaxial gap, but 
starting from a certain point xo (for x > xo) reverse flow will develop in the inner tube, 
accompanied by a rise in pressure. With increasing x there will be a very rapid swing in the 
solution. The point P' corresponds to the case in which Xo = L. 

In addition to (P', P") there is yet another range of values of the pressure P3)x = 0 > 
P", namely, (P' P"') in which there are no reverse flows. In this case for a certain . . . .  , 9 

xo' there wilibe a change in the direction of filtration, as in Fig. 2b. For x < xo', as 
before suction will take place from the inner tube into the coaxial gap, while for x > xo' 
it will proceed in the opposite direction. The case P31x = 0 = P" corresponds to xo' = L. 

Finally if P31x 0 > P''' = , reverse flow occurs in the coaxial gap for x > xo". With 
increasing x there is also a rapid swing in this solution. The condition P31x = 0 = P'" 
corresponds to the case xo" = L. 

The range of pressures P3)x = 0 for which no reverse flows nor rapid swings in the 
solution occur along the whole length L of the cable is the range (P', P"'). The extent of 
this depends on the permeability of the porous tube wall K and length of the cable L. A 
reduction in these quantities expands the range (P', P") and an increase contracts it. 

For a fixed permeability, an increase in the length of the cable leads to a reduction 
in the range (P', P"').Thevalue of L for which the range (P', P"') degenerates into a point 
is the limiting length of the cable for which stable flow of the coolant remains possible. 
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Fig. 2. Distribution of the hydrodynamic characteristics 
along the cable for K = 3.5 Darcy for P31x = 0 = P' a) 
and P, Ix = 0 = P''' b):l) P1--PIIx = 0; 2) P3--P~Ix = 0; 
3) vml = Vrllr = R:; 4) Vxg 5) vx~. AP, N/mS; v~1, m/sec; 
�9 Vx, m/sec; x, m. 

Thus the stability of flow in the cable under consideration largely depends on the permeabil- 
ity of the tube wall K, increasing as K falls. 

We calculated the flow of gaseous helium for the following parameters Rz = 0.005 m, R2 
= 0.01 m; R, = 0.013 m, ~x~Ix = 0 = 0.3 m/sec, Plx = 0 = 14 kg/m3; r = 5~ PIIx = O = 113,966 
N/m 2 . 

For a permeability of 35 Darcy the limiting length of the cable was 2 m. The range 
(P', P"') for a cable 3 m long and a permeability K = 3.5 was 0.02 N/m 2, and for a perme- 
ability 0.35 ~ 2.2 N/m 2. The results of the calculations for the two extreme cases of 
P31x = 0 = P' and P31x = 0 = P"' with K = 3.5 are presented in Fig. 2a and b. 

These calculations lead to the conclusion that t~e technical realization of optimum 
coolant flow in cables over 10-20 m long is very problematical. This is because, for long 
cables, the filtration velocity of the coolant passing from the inner tube to the coaxial 
gap ~proportional to I/L) is too low. In this case the pressure drop at the porous wall 
PI--P3 << P:Ix = 0--P:Ix = L" The perturbations arising in the flow are comparable with PI--P3; 
they distort the filtration of the coolant very severely, and this leads to instability of 
the flow. 

NOTATION 

x, r, axes of the cylindrical coordinate system; P, pressure; p, density; v, velocity; 
n, dynamic viscosity, % ,.thermal conductivity; h, specific enthalpy of the gas; T, temperature; 
K, permeability;l~,therma! conductivity of the porous matrix, the pores being filled with 
gas; Cp, specific heat of the gas a~ constant pressure; q, energy flux. 
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